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ESSAI DE MATHÉMATIQUES,
A L’ÉCOLE CENTRALE

DU DÉPARTEMENT DE LA DORDOGNE.

CALCUL. PROBLEMES.

Développer la démons­
tration de la formule du 
bynome y et en faire 
quelques applications, -

•• &c. Au moyen de laquelle on

élève un polynôme quelconque, à une puissance 
quelconque, ou on en extrait la même racine 
exacte ou approchée.

I I.

Les séries ou suites sont finies on infinies, 
convergentes ou divergentes. La méthode des 
coefficiens indéterminés, est d’un grand usage 
dans le calcul des séries. Elle a pour but prin­
cipal de faire connaître la suite des termes que 
l’on peut déduire de certaines quantités algébri­
ques , en fournissant autant d’équations particu­
lières que des coefficiens indéterminés, au moyen 
desquelles on trouve la valeur de chaque coeffi--

Développer la métho­
de des coefficiens indéter­
minés , et l appliquer à 
des exemples.
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tient. On obtient par cette méthode la valeur PROBLÈMES, 
approchée d’une expression algébrique fraction­
naire , ou la racine approchée d’une. quantité 
quelconque.

I I I.

La plus utile des opérations à faire sur les 
suites , consiste à les sommer. Elle se borne , pour Déterminer en frac- 
ainsi dire, à trouver la méthode d’en sommer tion ordinaire, la valeur
quelques-unes qui servent de formules auxquelles une fraction périodique

, ... -il-, • > influe.on ramene, s il est possible , les suites qu on veut 
ommer ; c’est ainsi qu’on parvient à sommer la

Il est quelquefois utile ou nécessaire d’avoir 
la somme d’un nombre quelconque de termes 
d’une suite Ou progression quelconque dé puis­
sances des nombres naturels, appellant a le pre­
mier terme, q le dernier, s la somme des ter­
mes , m un exposant servant à désigner les diffe-



PROBLÈMES.

Etant donné le terme 
sommatoire d'une série, 
indiquer comment on 
trouve son terme général.

Développer lu démons­
tration de cette formule 
et en faire des applica­
tions particulières.
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V.

On peut traiter les série sous un rapport aussi 
simple et plus avantageux , en considérant l’ex­
pression algébrique de chaque terme sous une 
forme générale qu’on appelle terme général, qui 
offre, par simple substitution , un terme quel­
conque de la série, pour tâcher d’en trouver en­
suite la somme, générale , ou le terme sommatoire 
qui donne généralement la somme d’un nombre 
quelconque de termes de la série. Quoique cette 
manière. d’envisager les suites présente beaucoup 
de difficultés , elle offre tant d’avantages dans Ses 
applications, qu’on ne peut trop s’attacher à la 
perfectionner.

V I.
La somme générale d’une série étant donnée , 

il est aisé d’en trouver le terme général ; mais il 
n’est n’est pas aussi facile de trouver la somme 
générale lorsque le terme général est donné. Et 
il est très-peu de cas où ce problème puisse être 
résolu. T étant une fonction rationnelle d’un

V I I.
La méthode inverse des séries qu’on appelle 

aussi retour des suites , est une des j>lus utiles



c't y...,
de l’analyse. C’est pat l’usage des coefficlens in­
déterminés qu’on parvient à la démontrer et à 
la pratiquer. Elle est tout à la fois exacte et com­
mode , et trouve son application dans une infi­
nité de parties mathématiques.

VIII.

Invention des logarithmes. Leur nature déduite 
des progressions géométriques. Tout système 
logarithmique dépend de la base qu’on choisit. 
Système des tables ordinaires. Idées des travaux 
de ceux qui ont construit des tables de loga­
rithmes. Quelque système qu’on choisisse , on

S'ily a cent mille ha­
bitans dans un départe­
ment , et que la popu­
lation y augmente tous 
les ans de la trentième, 
partie , quel sera le nom­
bre des habitans au bout 
d'un siècle.

Quelle est la quantité 
dont il faudrait qu'un 
peuple s'accrut tous les 
ans , pour être deux fois 
plus nombreux à la fin 
de chaque siècle.
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méthodes pour les simplifier. Parmi ces méthodes 
celle des suites a mérité l’attention des géomè­
tres par la rapidité de sa marche. Suivant les 
principes de cette méthode, l’expression générale 
du logarithme de i±x est L ( i ± x )= A ( ±; x

^PROBLÈMES.

Développer la démons­
tration de cette formule.

D’où il suit qu’un même nombre peut avoir une 
infinité de logarithmes. Supposant le module A 
= i on aura les logarithmes naturels ou de 
Néper, qu’on appelle aussi logarithmes hyperbo­
liques.

X.
'Appliquer ces formu­

les à la recherche du lo­
garithme hyperbolique 

déun nombre quelconque*

étant plus petit que a au moyen de laquelle il 
serait facile d’avoir le logarithme naturel d’une 
quantité quelconque. Cette série fournit encore

I X.

Le logarithme de la base logarithmique étant 
toujours l’unité, il est facile de déterminer le 
module, pour un système logarithmique autre que 
celui des logarithmes naturels, et par conséquent 
de ramener ces derniers au logarithme d’un système

Déterminer le module 
pour un système quel­
conque de logarithmes*
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quelconque. D’où il Wrt que pour ramener les PROBLÈMES» 

logarithmes hyperboliques aux logarithmes tabu­
laires , il faut multiplier les premiers par la fraction 
o , 43419448. &c. ; et réciproquement, pour 
changer les logarithmes des tables, des logarith­
mes hyperboliques, il faut multiplier ceux - là 
par 2, 30258509. &c.

XII.
rour revenir au îoganinme au nuniure auquel 

il appartient ; on réduit la difficulté à trouver 
le nombre auquel répond un logarithme hyper­
bolique donné; et, pour y parvenir on emploie 

dz. méthode inverse des séries. Nommant n le nombre Trouver la base des 
logarithmes hyperboli-' 
ques.

Construction géométriques.

Les constructions géométriques sont une des 
parties les plus importantes de l’application de 
l’algèbre à la géométrie. Elles ont lieu relative­
ment aux équations algébriques où l’inconnue 
peut être déterminée en lignes. L’équation peut 
être linéaire ou du premier degré , quadratique 
ou du second degré , cubique ou troisième degré, 
&c. Sec, &c. Dans le premier cas, l’inconnue

Inscrire un carré dans 
un triangle donné.
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n’a qu’une valeur qu’on détermine par l’intersec­
tion des lignes droites ; dans le second cas , elle 
a deux valeurs qu’on trouve par l’intersection 
du cercle et de la ligne droite; dans les autres 
cas, elle a trois , quatre , &c. valeurs qu’on dé­
termine par l’intersection de différentes courbes, 
dont le choix et l’usage , quoique difficiles , peu­
vent donner beaucoup d’élégance à la construc­
tion. Cette manière de considérer les équations 
algébriques, forme une branche d’analyse , aussi 
intéressante qu’utile, à laquelle les géomètres, 
depuis Descartes, se sont attachés avec succès. 
Pour parvenir à l’équation qui résout un pro­
blème , il faut examiner attentivement les condi­
tions de ce problème , exprimer ces conditions 
par des équations d’où l’on puisse tirer l’équation 
finale. Construction géométrique de plusieurs 
équations algébriques déterminées du premier et 
du second degré.

Théorie des Sinus.

I.

PROBLÈMES.

Mener d'un point don­
né hors de deux paral­
lèles une droite, de ma­
nière que la partie inter­
ceptée par ces parallèles, 
soit égale à une ligne 
donnée.

Décrire un cercle qui 
passe par deux points 
donnés et qui touche une 
droite donnée de position.

Couper une ligne en 
moyenne et extrême rai­
son.



PROBLÈMES.

En remontant aux formules précédentes, on en 
découvre d’autres qui forment des séries propres 
à simplifier le travail du calcul des tables des sinusj

A, B, C, D, &c. étant un nombre d’arcs 
quelconques, on aura, en nommant- s la somme 
de leurs tangentes, s" leurs produits deux à deux 
s'" leurs produits trois à trois, s'v leurs produits 
quatre à quatre, &c.





( 12 )
hyperboliqueson a ces autres expressions re- PROBLÈMES, 
latives au sinus et au cosinus de l’arc a qu’on 
peut employer utilement dans certains cas.

Déterminer la nature 
et l'expression des loga­
rithmes des quantités né­
gatives.

Développer ^analyse 
des opérarions qu il faut 
faire , et en donner des 

applications particu­
lières.
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PROBLÈMES.

SECTIONS CONIQUES.
Notions générales sur les courbes. Pour décrire 

une courbe, on rapporte chacun de ses points 
à l’axe des abscisses et à celui des ordonnées ; 
on cherche ensuite le rapport qui se trouve entre 

z les abscisses et les ordonnées, er l’expression ana­
lytique de ce rapport, donne l’équation de la 
courbe, d’après laquelle on découvre ses diffé­
rentes propriétés. Une courbe est géométrique 
ou transcendante. Le cours de ses branches est 
fini ou infini, elle peut avoir des points multi- 
pies , des points d’inflexion et des points de
rebroussement.

I I.
Si on coupe un cône droit ou oblique par 

un plan quelconque , auquel on donne différentes 
positions, on aura des sections ou courbes, 
connues sous le nom de sections coniques, dont 
l’équation générale sera , en appelant, A , B , C, 
les angles que forment entr’eux les côtés du cône 
et le diamètre de sa base, c la distance du som­
met du cône au plan coupant à l’origine des 
coordonnées,

y - /cXD ( B—"A (A+B))

Cette équation générale présente trois cas qui 
donnent trois équations particulières entre x et y , 
dont l’une exprime une courbe qui a deux bran­
ches infinies et qu’on nomme parabole, la seconde 
une courbe rentrante qu’on appelle élipse , qui 
contient aussi le cercle ; la troisième une courbe 
qui a quatre branches infinies qu’on appelle 
hyperbole.

Développer la démons­
tration de cette formule t 
et en déduire les différens 
cas qui se présentent pour 
les différentes positions 
du plan.



PROBLEME S.
Miner d'un point don­

né sur la parabole une 
tangente à cette courbe.

L'axe d'une parabole 
étant donné avec son pa­
ramétre , trouver un dia­
mètre qui fasse , avec ses 
ordonnées t un angle 
donné.

Le paramètre d'un dia­
mètre étant donné avec 
l'origine de ce diamètre 
et l'angle qu'il fait avec 
ses ordonnées, trouver 
l’axe, son origine et son 
paramètre.

Décrire une élipse,



PROBLÈMES.

Mener par un point 
donné de l'élipse une tan­
gente à cette courbe.

Étant donnés Us deux 
demi-axes d'une élipse , 
trouver deux diamètres 
qui fassent entr'eux un 
angle donné.

Les deux diamètres et 
l'angle qu'ils font entre 
eux étant donnés, trou­
ver les deux axes et Uur 
direction.

( M )
sommet oit du centre; La somme des rayons vec­
teurs est toujours égale au grand axe.

V.
Les angles formés sur la tangente en un point 

quelconque de l’élipse par les rayons vecteurs 
tirés des deux foyers, sont égaux. Dans cette 

bbx
courbe, la sounormale =—. La normale 7 aa

y i.

Diamètres conjugués de l’élipse. Paramètres de 
ces diamètres. Si des extrémités de deux diamètres 
conjugués , on abaisse du même côté deux per­
pendiculaires au grand axe, les triangles formés 
par ces perpendiculaires, les deux demi-diamètres 
conjugués et les parties du grand axe depuis le 
centre , seront égaux en surface ; la somme des 
carrés des parties de l’axe depuis le centre jusqu’à 
ces perpendiculaires est égale au carré du demi- 
grand axe ; et la somme des carrés de ces per­
pendiculaires est égale au carré du demi-petit 
axe. La somme des carrés des deux diamètres



PROBLÈMES.

Décrire une hyperbole

tes



?ROBLÈ MES;

Mener par un point 
donné de L'hyperbole, 
une tangente à cette 
courbe.

Une hyperbole ôtant 
donnée avec son axe,Dé­
terminer la position des 
asymptotes.

Décrire une hyperbole 
entre deux asymptotes 
données-, et qui passe par 
un point donné.
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égaux. Les parties de chacune de ces lignes com­
prises entre la courbe et les asymptotes sont égales. 
La tangente terminée aux asymptotes est divisée 

en deux également au point de contact.

X.

Diamètres conjugués de l’hyperbole , paramè­
tres de ces diamètres. Si des extrémités des deux 
diamètres on abaisse du même côté deux perpen­
diculaires sur le premier axe , les triangles for­
més par ces perpendiculaires, les deux diamètres 
et les parties de l’axe depuis le centre, seront 
égaux en surface , la différence des carrés des par­
ties de l’axe depuis le centre jusqu’à ces per­
pendiculaires , est égale au carré du demi-grand 
axe , et la différence des carrés de ces perpen­
diculaires , est égale au carré du demi-petit axe. 
La différence des carrés des deux diamètres con­
jugués quelconques de l’hyperbole est égale à la 
différence des carrés des deux axes. Le parallé­
logramme construit sur les. diamètres conjugués 
est d’une surface constante et toujours égale 
à celle du rectangle des axes.

Si m et n sont deux diamètres conjugués, on.

a y' = —; ( x2 - m2 ) Un diamètre divise tou-

tes ses ordonnées en parties égales et est divisé 
en deux également au centre.

PROBLÈMES.

Etant donnés les deux: 
demi axes d'une hyper­
bole , trouver deux dia­
mètres qui fassent entre 
eux un angle donné.

Etant donnés les deux 
diamètres conjugués

d'une hyperbole et l'angle 
qu'ilsfont entr'eux, trou­
ver les deux axes et leur 
direction.
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X L

La quadrature des courbes est une des parties 
les plus importantes de la géométrie. On obtient 
celles des sections coniques par la méthode des 
suites en supposant les surfaces de ces courbes 
composées d’une infinité de petits rectangles d’une 
hauteur égale. On trouve par-là que la surface de 
la parabole est les deux tiers du rectangle formé 
sur l’abscisse et l’ordonnée ; quant à l’ellipse et 
l’hyperbole, on obtient pour l’expression des sur­
faces de Ces deux courbes, des séries conver­
gentes , desquelles il résulte i.° que la surface de 
l’ellipse est à celle du cercle construit sur le grand 
axe, comme le petit axe est au grand axe ; qu’elle 
est égale à celle du cercle dont le diamètre est 
moyen proportionnel entre les deux axes , et 
qu’il y a même rapport entre un secteur elliptique 
et le secteur circûlàire correspondant, qu’entre 
les surfaces entières. 2.° Qu’il y a même analogie 
entre l’hyperbole équilatère et une hyperbole 
quelconque, qu’entre le cercle et l’ellipse ; ensorte 
que si on avait la quadrature d’une seule hyper­
bole , on aurait aussi-tôt celle de toutes les autres.

X I I.

m2 étant la puissance d’une hyperbole a 
l’angle que font les asymptotes , on a pour sa 
surface asymptotique une série logarithmique, 
qui se réduit à une expression finie ; ensorte qu’en 

nommant i cette surface , on a s s m fin. a L~
qui devient 5=L^ quand l’hyperbole est équi­
latère et sa puissance =i. ; d’où il résulte que 
cette surface est le logarithme naturel de l’abs-

PROBLÈMES.

Donner les détails de 
Ü application de la doc­
trine des suites à la qua­
drature des sections coni­
ques , et des conséquences 
qui s'ensuivent.



Déterminer la position 
de T asymptote des bran­
ches de la cissoide^

Déterminer les diffé- 
rens cas de la concho'idc 
d nœud , et de la con~ 
ehoïde à bec ou à rebrous­
sement.

PROBLÈMES.

Déterminer un tra­
pèze hyperbolique, qui 
soit à un autre trapèze , 
dans le rapport dey à q.
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ÎO' r r '

LA LOGARITHMIQUE, m étant le module et e le 
nombre dont le logarithme hyperbolique est i ,

X
on a pour l’équation de cette courbe y = e m.

Elle a une branche infinie qui s’approche conti­
nuellement de la directrice, sans pouvoir jamais 
l’atteindre. Elle est du nombre des transcendantes. 
Sa soutangente est toujours de la même grandeur , 
et égale au module. D’où il suit que dans deux 
logarithmiques différentes, les abscisses des mêmes 
ordonnées sont comme les soutangentes, et que 
par conséquent les logarithmes des mêmes nom­
bres , dans différens systèmes, sont entr’eux 
comme les modules.

I V.

La cycloïde. Cette courbe est décrite par un 
cercle qui peut avoir tout à-la-fois un mouvement de 
rotation et de translation ; d’où il suit qu’elle est 
simple ou allongée ou accourcie. Son équation gé-

h
nérale est y “ ~ + fin. « , « étant un arc quel­

conque du cercle générateur pris du sommet. 
Elle est transcendante. La tangente de la cycloïde 
ordinaire est parallèle à la corde correspondante 
de l’arc du cercle générateur, et sa surface totale 
est triple de celle du même cercle. Il peut y avoir 
encore plusieurs autres espèces de cycloïdes selon 
que le point décrivant est pris dans le cercle ou 
hors du cercle.

V.

La quadratrice. Désignant par e le quart de

PROBLÈME S.

Mener une tangente à 
un point quelconque de la 
logarithmique.

Mener une tangente à 
un point quelconque

d'une cycloïde ordinaire 
accourcie ou allongée.



sion qui fait voir que si la base de la quadratrice
pouvait être déterminée, on aurait aussitôt la Déterminer la position
quadrature du cercle. Cette courbe est transcen- des asymptotes delà qua- 
; . <• 2 'dratnw. ■danteet a deux branches égalés et infimes , dont 

les asymptotes sont perpendiculaires au diamètre 
du cercle. Si on pouvait la décrire géométrique­
ment , on aurait immédiatement tous les angles : / ■
d’un nombre donné de degrés. J - -,

. v;:.

La spirale. Elle prend differens noms, comme 
spirale Archimède, parabolique , hyperbolique ,
&c. Les ordonnées dans toutes ces courbes parn 
tent d’un point fixe, et les abscisses 5ont repré­
sentées nar des arcs de cercle ; d’où il suit due



PROBLÈME S.

Mener une eangente à 
la spirale hyperbolique. ‘
b '■’.i ; 'f uo a:,o

Déterminer l'asimptott 
de cette courbe.
îrisifnôa - i ' .s - 

iinaitcqqB liiaq stîfe 2E3 
:\nnoblO-O3 ïi - ol'gab I
)lod;3cr'd an» É îtrjii

Développer les équa­
tions particulières qui ré­
sultent de l'équation gé­
nérale.
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n’exprime incurie ligne p’ossible. i.° Elle appar­
tient à une parabole si />.;&= 7 « 2, c’est-à-dirè, si 
les . trois premiers termes forment un carré par­
fait , ou s’il rie reste de ces trois premiers térmés 
que x2 ou y2 ; i,° elle appartient à une élipse 
$i b est plus grand que 7 az, et si en même-temps 
le terme qui contient x~ est positif. Et dans ce 
cas elle peut appartenir à un cercle si £ = 1 , et si 
l’angle des co-ordonnées est droit; 3.0 elle appar­
tient à une hyperbole si b est plus petit que 
'-a 2 ou si b est négatif, ou si ayant le rectangle 
xy elle manque de l’un des deux carrés x~ ou 
y* ; 4.0 elle appartient à une hyperbole entre 
ses asymptotes si les deux carrés' x et y2 man­
quent à-la-fois. Tels sont les principes d’après 
lesquels on ramène aux sections coniques toute 
équation du second degré, à deux indéterminées , 
lorsqu’elle exprime une chose possible. Ces prin­
cipes s’appliquent avec succès à la résolution 
de plusieurs questions indéterminées dont le dé­
tail jette le plus grand jour sur toute cette théorie 
aussi utile qu’intéressante.

III.

PROBLÈMES.

Deux points étant don­
nés , trouver la courbe 
telle qu'en menant yde ces 
deux points , deux droi­
tes qui se rencontrent en 
un même point de cette 
courbe, l'angle qu’elles 
forment entr'elles soit 
toujours le même.

Si dans P angle formé 
par deux lignes, on fait 
mouvoir une autre ligne , 
de manière que ses extré­
mités restent toujours sur 
les côtés de cet angle , 
déterminer la courbe dé­
crite par un point pris 
sur cette ligne.

Faire passer une sec­
tion conique par cinq- 
points donnés^

Les mêmes principes peuvent servir à résou­
dre des questions déterminées. Lorsque l’équa­
tion finale qui exprime les conditions d’un pro­
blème passe le second degré, on emploie- pour 
la résoudre l’intersection des courbes auxquelles, 
on donne une même abscisse, en supposant qu’elle 
est le résultat de deux équations partielles à deux 
indéterminées, qui, construites séparément, don­
nent chacune une courbe. Si le problème est 
possible , les couibes se cénpent en atttantde

Trouver deux; moyen­
nes proportionnelles entre 
deux lignes données.

Diviser un arc de Cer- 
cle-en trois parties égales.

-4 -J w -

points
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points qu’il. a de solutions : en sorte que tant 
que le deux équations quiexpriment ces courbes 
ne passeront pas le second degré, la solution 
ne dépendra jamais que de l’intersection de deux 
sections coniques.'De là il suit qu’on peut ré­
soudre par l’intersection des sections coniques 
toute équation déterminée du troisième et du qua­
trième degré. Dans chaque cas les sections à 
construire se couperont en autant de points 
qu’il y aura de racines réelles , et s’il y a des 
racines égales elles se toucheront en un ou deux 
points. La solution des équations plus élevées 
dépend de l’intersection des courbes d’ordres plus 
élevés que les sections coniques. L’élégance d’une 
construction géométrique demande qu’on y em­
ploie les courbes les plus simples du même ordre.

PROBLÈMES.

Résoudre, par une 
construction géométrique 
P équation générale du 
troisième degré, x 
— pzq.

Trouver les racines de 
Véquation générale du

quatrième degré x4 --- •
pz x '~\-pz qx-\-p' r= o 
par le moyen du cercle et 
dé une parabole.

Principes du calcul infinitésimal.

Toute grandeur peut varier d’une quantité quel­
conque en augmentant ou en diminuant. Suivre 
les rapports de ces variations , et remonter par 
la connaissance de ces rapports à la grandeur 
elle-même, est l’objet du calcul infinitésimal. 
Origine de ce calcul. Méthodes qui l’ont précédé; 
il se divise en calcul différentiel et en calcul 
intégral.

Calcul différentiel.

I.

Le calcul différentiel enseigne à trouver les 
différences ou variations infiniment petites d’une 
quantité variable quelconque. On emploie la lettre 
d pour désigner ces différences. Avantages de cette



PROBLÈMES.

Développer la manière 
de différencier une expres­
sion algébrique quelcon­
que.

Trouver la différentielle 
d'une expression logarithr 
mique f exponentielle ou.
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qui servira à mesurer la courbure d’une courbe 
en un point quelconque.

V.

Pour trouver entre plusieurs quantités qui 
croissent ou qui décroissent suivant une cer­
taine loi, quelle est la plus grande ou la-petite; 
on emploie la méthode des maximis et minimis, 
qui consiste particulièrement à considérer l’ex­
pression du rapport de ces quantités comme 
l’équation d’une courbe dans laquelle l’ordonnée 
peut devenir un maximum ou minimum , ou tout 
à-la-fois un maximum et un minimum, suivant 
que la tangente sera parallèle ou perpendicu­

laire à l’axe. Ces cas donnent — ==o ou ——o
dx, dy

et pour les distinguer d’une manière générale , 
il faut avoir égard en même-temps à l’expres­
sion du rayon de courbure, qui pouvant deve­
nir positif ou négatif, infini ou nul, peut faire 
connaître le vrai caractère de la quantité dont 
on cherche la nature. Détails sur cette matière.

PROBLÈMES.

Déterminer l'expres­
sion du rayon de cour­
bure dans les sections 
coniques.

Diviser une quantité a 
en deux parties, telles 
que le produit xm (a-xf1 
soit le plus grand possi­
ble.

Trouver les diamètres 
conjugués de l'élipse qui 
font entr'eux le plus petit 
angle.

De toutes les paraboles 
que l'on peut couper dans 
un cône droit, déterminer 
celle qui a le plus de sur­
face..

Trouver le nombre x , 
dont la racine x est un 
maximum,.

V I.

Il se présente souvent des expressions algébri­
ques en forme de fractions dont les numérateurs 
et les dénominateurs se réduisent à zéro dans cer­
tains cas , qui, quoique indéterminées en appa­
rence , sont pourtant susceptibles de valeurs dé­

terminées. - étant une fraction de ce genre, on 

la changera en i si la valeur donnée à x ne

Trouver la valeur de 
x2 a1la fraction--------- . lors-x~ a

qucx s== a.

Trouver la valeur de 
a — x

y— —%» qui est Te- 
acot.-p.

quation de la quadratrice*. 
lorsque x~ a
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réduit pas cette nouvelle fraction a;, on aura 
la valeur de la fraction primitive ; mais si cette

P>
nouvelle fraction représentée par — se réduit

a-, on la changera encore en-— qui donnera

la valeur de la fraction primitive dans la même
supposition si elle ne se réduit pas a ; dans le
cas contraire on changera cette dernière expri-

, P" dP” . . , . .mee par _ en — „, et ainsi de suite jusqu à ce

qu’on ait une valeur dont un des termes , au 
moins, soit fini.

Calcul intégral.

I.

Le calcul intégral a pour objet de trouver la 
quantité à laquelle appartient une différentielle 
donnée, c’est-à-dire de déterminer le rapport des 
variables par celui de leurs différentielles. On 
se sert de la lettre f pour désigner une intégrale. 
Toute différentielle monome xndx est intégrable 
algébriquement, excepté lorsque n —— i. son 

intégrale algébrique est fxndx ta---- -—-f-C;
n 4- I

Donner la règle géné­
rale d’intégration et l'ap­
pliquer à des différentiel­
les susceptibles d'intégra­
tion immédiate.

mais si n = —,j on a alors/ — = Lx. -f- C. Il

suit de là que l’on obtiendra toujours l’intégrale 
d’une différentielle polynôme à une variable ré­
ductible à une suite de monômes. Dans toute 
intégration il faut ajouter une constante. On. 
la supposera par la suite.

I I. — ..... . ' . < -y k
Toute différentielle bynome xa dx(a-+-xm},
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parvenir pâr le moyen des principes précédens, 
en égalant la propriété donnée à l’expression gé­
nérale de la même propriété exprimée par le 
moyen du calcul différentiel. On aura ainsi une 
équation qui, par l’intégration exacte ou indiquée, 
donnera celle de la courbe. Cette méthode est 
appelée méthode inverse des tangentes.

PROBLÈMES.
Trouver la courbe dont

’ d+xzla soutangente est——-

Trouver la courbe dans 
laquelle la somme de la 
sounormale et de l'abscis­
se est constante.
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